Lecture: Advanced methods of discretization

Simple one-step discretization methods based on either Euler, trapezoidal rule or Runge-Kutta have some limitations to provide stability and sufficient accuracy in practice, especially, when the differential system is stiff (very different time constants of the analyzed signals). Therefore, more advanced and more complex multi-step discretization schemes have been developed. This lecture will present 5 of them: Adams-Bashforth, Adams-Moulton, Gear, Klopfenstein and Rosenbrock methods. The first three are based on polynomial approximation.

1. Polynomial approximation.
In polynomial approximation the solution x(t) is approximated by kth order polynomial x(t) 
x(t)=α0+ α1t+ α2t2+…+ α0tk
In practice we prefer the discrete form of it, which has been defined in general as follows


To satisfy the compatibility of both forms the following conditions should be met

								(1)

for j=1, 2, …, k, k – rank of approximation, p – number of steps in the past. Assuming different initial assumptions three different forms of this algorithm have been defined.

2. Adams-Bashforth algorithm
Authors have set the following initial assumptions in general equation 


p=k-1, a0=1, a1= a2=…= ak-1=0, b-1=0
At these assumptions the general form of A-B formula is given as follows


The values of coefficients are calculated by solving the set of equations (1) for different values of k. Table 1 shows the examples of A-B formulas of different orders.

Table 1 Adams-Bashforth – formulas of different orders
[image: ]

3. Adams-Moulton algorithm

Authors have set the following initial assumptions in the general equation :
 p=k-2, a0=1, a1= a2=…= ak-2=0.
At these assumptions the general form of A-M formula is given as follows


The values of coefficients are calculated by solving the set of equations (1) for different values of k (identically as for A-B formula). Table 2 shows the examples of A-M formulas of different orders.

Table 2 Adams-Moulton – formulas of different orders
[image: ]
4. Gear algorithm
Gear algorithm has been developed for stiff differential system, i.e. differential equations of the solution characterized by time constants of very different values within the analyzed time range. 

Author has assumed the following initial conditions in general equation :
 p=k-1, b0=b1= b2=…= bk-1=0.
At these assumptions the general form of Gear  formula is given as follows


The values of coefficients are calculated by solving the set of equations (1) for different values of k (identically as for A-B formula). Table 3 shows the examples of Gear formulas of different orders.
Table 3 Gear – formulas of different orders
[image: ]
5. Klopfenstein algorithm
Klpfenstein applies the Numerical Differentiation Formulas – NDF), in which 


where


Hence

	

			
Klopfenstein method is typical predictor-corrector formula, in which the prediction is very simple (Euler forward formula)

							
Correction in this NDF algorithm of rank p=k is according to formula

								
where Δ(i) is the results of solving the following implicit matrix equation

		

J - Jacobian matrix of function f(t,x), 

γk = Klopfenstein sum , 

ψ – vector defined as ,
r – Klopfenstein coefficient defined for k=1, 2, 3, 4 (see table 5).

Table5 Values of Klopfenstein coefficients
	k
	r

	1
	-0,1850

	2
	-1/9

	3
	-0,0823

	4
	-0,0415




6. Rosenbrock algorithm
Rosenbrock algorithm is the modified RK23 algorithm for stiff differential equations. It is composed of the following steps

				
Estimation of local error ε 

							(6.25)
The following notations have been made:

, 

, 






 
7. Matlab implementation
Matlab has implemented all these algorithms. Their names and types of the algorithms are presented in Table 4.
Table 4 Matlab variable step algorithms 
	Function name
	Algorithm
	Type of equation

	ode15s
	Klopfenstein
	stiff

	ode23
	RK23(Bogacki-Shampine)
	Non-stiff

	ode45
	RK45 (Dormand-Prince)
	Non-stiff

	ode23s
	Rosenbrock
	stiff

	ode23t
	trapezoidal
	Stiff moderately

	ode23tb
	Gear+trapezoidal
	stiff

	ode113
	Adams-Bashforth_Moulton
	Non-stiff



Table 4 Matlab fixed  step algorithms 
	Function name
	Algorithm

	ode5s
	Dormand_Prince

	Ode4
	RK4

	Ode3
	Bogacki-Shampine

	ode2
	Heune

	Ode1
	Euler implicit

	Ode1x
	Euler explicit (extrapolation)
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