INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WYDZIAŁ ELEKTRONIKI WAT Zakład Systemów Informacyjno-Pomiarowych					
Elektroniczna Aparatura Pomiarowa					
PROTOKÓŁ POMIAROWY / SPRAWOZDANIE					
Temat: WIRTUALNE PRZ	Temat: WIRTUALNE PRZYRZĄDY POMIAROWE				
Grupa:	Data wykonania ćwiczenia:				
Zespół w składzie:					
1.	Prowadze ov ówiezenie				
2.	riowauzący cwiczenie:				
3.					

Uwagi prowadzącego ćwiczenie:

Na zajęcia należy przynieść zewnętrzny nośnik danych USB (pendrive'a).

Wykaz przyrządów znajdujących się na stanowiskach:

Lp.	Nazwa przyrządu	Тур	Producent	Uwagi
1.	Przystawka oscyloskopowa			
2.	Generator pomiarowy			
3.	Moduł kontrolno- pomiarowy			
4.	Rezystor dekadowy			
5.	Kondensator dekadowy			

CZĘŚĆ I: Wykonywanie pomiarów z wykorzystaniem przystawki oscyloskopowej PicoScope

1. POMIAR WYBRANYCH PARAMETRÓW

Połączyć układ pomiarowy zgodnie z poniższym rysunkiem i uruchom program PicoScope 6.

Doprowadź do oscyloskopu sygnały o parametrach zadanych poniżej. Po otwarciu okna programu PicoScope 6, skorzystaj z funkcji automatycznego doboru nastaw oscyloskopu wciskając ikonkę ². Korzystając z pomiarów automatycznych ^{Pomiary} I I I i kursorów wykonaj pomiar parametrów zamieszczonych poniżej, gdzie T - okres, ti - szerokość impulsu, tn – czas narastania. Po odpowiednim umieszczeniu kursorów oraz włączeniu funkcji automatycznego pomiaru **zapisz plik w formacie pdf**.

a) Sygnał sinusoidalny: $f = 0,1 \text{ kHz}, U_{RMS} = 2V$

	T [ms]	Upp [V]
pomiar automatyczny		
kursory		

b) Sygnał impulsowy: f = 1 kHz, $U_{RMS} = 1V$, Duty: 30%

	t _i [ms]	Upp [V]
pomiar automatyczny		
kursory		

c) Sygnał trójkątny: f = 1 kHz, $U_{RMS} = 3V$

	t _n [ms]	Upp [V]
pomiar automatyczny		
kursory		

2. WYZNACZENIE STAŁEJ CZASOWEJ UKŁADU FILTRA DONOPRZEPUSTOWEGO Stałą czasową RC układu można wyznaczyć na podstawie pomiaru czasu t oraz napięć U(t₁) i U(t₂).

Połączyć układ pomiarowy zgodnie z poniższym rysunkiem.

Badany układ pobudzić przebiegiem prostokątnym f = 1 kHz, LoLevel = 0 V, HiLevel = 4 V. W oknie programu PicoScope utwórz dwa widoki, w taki sposób, aby na jednym wyświetlał się sygnał prostokątny z generatora (kanał B), a na drugim sygnał z wyjścia badanego układu (kanał A). W tym celu użyj zakładki: Widoki \rightarrow Dodaj widok \rightarrow Oscyloskop. Następnie zaznacz właściwe okno i ponownie Widoki \rightarrow Kanały \rightarrow (Zaznacz właściwy kanał A lub B). Przy użyciu kursorów zaznacz odpowiednie parametry i uzupełnij poniższą tabelę. Po wykonaniu pomiarów **zapisz plik w formacie pdf**. Na podstawie otrzymanych pomiarów oblicz stałą czasową układu (zapisując obliczenia).

parametr	pomiar
t ₁ [μs]	
t ₂ [μs]	
t [µs]	
$U(t_1)[V]$	
$U(t_2)$ [V]	

τ_{pom} = RC =		
---------------------	--	--

Obliczenia:	

Zanotuj wartości elementów układu filtra i na ich podstawie również oblicz stałą czasową. Porównaj obie wartości i zapisz swoje spostrzeżenia.

$$\begin{split} R &= \dots \\ C &= \dots \\ \tau_{obl} &= RC = \dots \end{split}$$

Obliczenia:

Wnioski:

3. POMIAR PRZESUNIĘCIA FAZOWEGO

Połączyć układ pomiarowy jak w zadaniu poprzednim. Wyprowadzić z generatora sygnał sinusoidalny f = 1kHz, U_{RMS} = 2V. Wykonaj pomiar przesunięcia fazowego dwoma metodami: oscyloskopu dwukanałowego i figur Lissajous. Pamiętaj aby **zapisać w formacie pdf** otrzymane oscylogramy.

a) <u>Metoda oscyloskopu dwukanałowego</u>

Aby zmierzyć przesunięcie fazowe należy uzyskać na jednym oknie widok z dwóch kanałów oscyloskopu. Następnie zmierzyć za pomocą kursorów odpowiednie odcinki według poniższego rysunku i obliczyć przesunięcie φ z poniższego wzoru:

b) Metoda figur Lissajous

Aby zmierzyć przesunięcie fazowe tą metodą należy zmienić tryb pracy oscyloskopu na XY. W tym celu kliknij w zakładkę Widoki \rightarrow Dodaj widok \rightarrow XY. Używając kursorów zmierz odpowiednie odcinki według poniższego rysunku i obliczyć przesunięcie φ z poniższego wzoru:

c) <u>Obliczenie teoretycznego przesunięcia fazowego</u>

Wartość teoretyczna przesunięcia fazowego można obliczyć na podstawie rzeczywistych wartości elementów R i C układu. W tym celu należy zanotować wartości R i C i obliczyć wartość teoretyczną kąta przesunięcia fazowego φ dla częstotliwości 1 kHz korzystając z poniższych zależności:

$tg(\phi) = -\omega RC, \omega = 2\pi f$
R =
C =
$\phi = \dots$

Obliczenia:

Porównaj otrzymane wyniki przesunięcia fazowego i zapisz swoje spostrzeżenia:

Wnioski:....

4. WYKORZYSTANIE FUNKCJI MATEMATYCZNYCH

Połączyć układ pomiarowy jak na rysunku.

Wykorzystując funkcje matematyczne, wykreśl przebieg mocy w czasie na rezystorze ($R = 5 k\Omega$) dla wymuszenia sygnałem trójkątnym o parametrach f = 1 kHz, $U_{pp} = 4V$. W tym celu wybierz Narzędzia \rightarrow Kanały Matematyczne \rightarrow Twórz, następnie w pustym oknie wpisz odpowiednią zależność matematyczną, nadaj nazwę wielkości mierzonej pośrednio i zadeklaruj odpowiednią jednostkę. Wyznacz wartość skuteczną tego przebiegu z kilku okresów sygnału (wykorzystaj opcję *Między linijkami*). Pamiętaj aby **zapisać w formacie pdf** otrzymane oscylogramy.

Wykorzystana zależność matematyczna: P =

 $P_{RMS} = \dots$

5. ANALIZA WIDMOWA

Połączyć układ pomiarowy jak w zadaniu 1. W programie PicoScope 6 uruchom analizę widmową. Przeprowadź analizę widmową do poniższych sygnałów o parametrach f = 1 kHz, $U_{pp} = 2V$. Przy pomocy automatycznych pomiarów wykonaj pomiar współczynnika zawartości harmonicznych TDH [%] (wyznaczony z 10 pierwszych harmonicznych). Dobierz najlepsze okno czasowe. Pamiętaj aby **zapisać w formacie pdf** otrzymane widma.

Wybrane okno:....

badany sygnał	współczynnik zawartości harmonicznych [%]
sinusoidalny	
trójkątny	
prostokątny	

CZĘŚĆ II: Wykonywanie pomiarów z wykorzystaniem modułu pomiarowego myDAQ

1. BADANIE FILTRA PASYWNEGO

Celem ćwiczenia jest zaprojektowanie i wykonanie filtra pasywnego. Układ zostanie przebadany wyłącznie z wykorzystaniem modułu myDAQ- kompaktowego urządzenia firmy National Instruments.

1.1. Zaprojektować filtr pasywny RC dolnoprzepustowy (pierwszego rzędu) o częstotliwości granicznej 5 kHz. Podczas projektowania uwzględnić możliwość późniejszej realizacji układu na dostępnych na stanowisku wartościach rezystancji i pojemności. Wartość rezystancji nie powinna być mniejsza niż 2,5 kΩ. Poniżej narysować schemat ideowy zaprojektowanego układu.

```
R = .....(wartość założona) C = .....(wartość wyliczona)
```

Schemat ideowy

1.2. Wykorzystując dostępne na stanowisku przyrządy pomiarowe zmontować zaprojektowany filtr. Wyznaczyć charakterystykę amplitudową i fazową tych układów wykorzystując oprogramowanie *Bode Analyzer* oraz moduł myDAQ. Schemat połączeń zgodny z rys. 1. Pomiary wykonać w paśmie od 100 Hz do 20 kHz dla amplitudy sygnału wejściowego 5V.

Rys 1. Schemat blokowy układu pomiarowego do pomiaru charakterystyk częstotliwościowych

- Wygeneruj raport w postaci pliku .png zawierający charakterystykę amplitudową oraz fazową
- Jaka jest częstotliwość graniczna wykonanego filtra dolnoprzepustowego?
- Co jest powodem powstania równicy pomiędzy częstotliwością graniczną teoretyczną a zmierzoną?

2. POMIAR CHARAKTERYSTYKI PRZETWARZANIA FILTRA DOLNOPRZEPUSTOWEGO

Wykonać pomiar charakterystyki przetwarzania filtra dolnoprzepustowego dla napięć z przedziału U_{we_p} = (0, 5V), gdzie U_{we_p} jest amplitudą sygnału wejściowego oraz dla ustalonej częstotliwości dokonać odczytu wartości skutecznej napięcia na wyjściu układu i wyliczyć amplitudę sygnału wyjściowego. W celu realizacji ćwiczenia wykorzystać oprogramowanie *Function Generator, Digital Multimeter* oraz moduł myDAQ. Schemat połączeń zgodny z rys. 2.

Rys 2. Schemat blokowy układu pomiarowego do pomiaru charakterystyk przetwarzania

Tabela 1.

f= 1 kHz											
Lp.	-	1	2	3	4	5	6	7	8	9	10
\mathbf{U}_{we_p}	mV										
\mathbf{U}_{wy_sk}	mV										
U _{wy_p} (obl.)	mV										

Tabela 2.

$f = fg = \dots$											
Lp.	-	1	2	3	4	5	6	7	8	9	10
U _{we_p}	mV										
U _{wy_sk}	mV										
U _{wy_p} (obl.)	mV										

Tabela 3.

f= 10 kHz											
Lp.	-	1	2	3	4	5	6	7	8	9	10
U _{we_p}	mV										
U_{wy_sk}	mV										
U _{wy_p} (obl.)	mV										

• Na podstawie danych zapisanych w tabeli 1, 2 ,3 nanieś na wykres dyskretne wyniki pomiarów zależności $U_{wy_p}=f(U_{we_p})$

• Wykonać aproksymację