

WOJSKOWA AKADEMIA TECHNICZNA

WYDZIAŁ ELEKTRONIKI

Drukować dwustronnie

Komputerowa Analiza Układów Elektronicznych							
Grupa		Data wykonania ćwiczenia:	Ćwiczenie prowadził:				
Nazwisko i imię:	Ocena						
1.							
2.		Uwadi:	Podpis:				
3.		e nag.					
Sprawozdanie z ćwiczenia laboratoryjnego							
Temat: <i>Algorytmy standardu Spice w zastosowaniach praktycznych</i>							

ZADANIA

Zadanie 1. ICAP/4 - przypomnienie

Wczytać z katalogu ASP projekt wzmacniacza RC (**WZM_RC.dwg**). Korzystając z opisu i wskazówek zawartych w rozdziałach skryptu dotyczących symulacji przykładowego układu (p. 3.1.2.1 str.61 - opis biblioteki elementów, p. 3.1.2.2 str.65 – analiza AC oraz p. 3.1.2.3 str. 70 – analiza Tran), uzupełnić projekt o tranzystor 2N2222. Przeprowadzić analizę *DC* (OP), *AC* oraz *Tran*. W oparciu o jej wyniki określić:

- punkt pracy tranzystora w układzie wzmacniacza (I_C , U_{CE}),

- wykreślić charakterystykę amplitudowo-częstotliwościową wzmacniacza i odczytać z niej częstotliwości graniczne wzmacniacza oraz wzmocnienie (w dB),
- wykreślić przebieg czasowy dla dwóch wartości sygnału wymuszającego (Ug=1 mV oraz Ug=100 mV). W oparciu o przebieg wyjściowy (dla Ug=1 mV) określić wzmocnienie układu.
 Określić (na podstawie kształtu) maksymalną wartość Uwe dla pracy liniowej (niezniekształconej).

Wszystkie pomierzone (odczytane) wartości wpisać do tabeli poniżej

Tabela parametrów analizowanego wzmacniacza w ICAP.

f _d [Hz]	f_g [Hz]	G_{U AC} [dB]	G_{U TRAN} [V/V]	max $oldsymbol{U}_{we}$ dla pracy lin

Wnioski i spostrzeżenia z przeprowadzonych symulacji oraz analiz:

Komputerowa Analiza Układów Elektronicznych str.

Zadanie 2. Dobór kroku czasowego dla analizy Tran

Wczytać (otworzyć) projekt *WO_step_time.dwg* z katalogu *ASP*. Przeprowadzić analizę czasową układu wzmacniacza dla zdefiniowanych już w projekcie parametrów. Porównać wynik symulacji z okna *IsSpice* z wykresem z *IntuScope*. Przeprowadzić kolejne analizy dla krótszego kroku czasu analizy: *Data Step Time* 0.1ms oraz 0.04ms. Wszystkie trzy wykresy oraz przebieg z okna *IsSpice* przeszkicować do poniższego okna:

Wnioski i spostrzeżenia z przeprowadzonych symulacji oraz analiz:

Zadanie 3. Deklaracja maksymalnego kroku czasowego dla analizy Tran

Nowy projekt: narysować układ szeregowego obwodu rezonansowego, zadeklarować właściwe źródło wymuszenia oraz analizę Tran (wytyczne poniżej) – projekt zapisać w katalogu ASP pod nazwą: *RLC_Time.dwg*.

Przeprowadzić analizę czasową (Tran) dla kolejnych wartości kroku czasowego analizy: 0.5ms oraz 5us. Porównać przebiegi zarówno z IsSpice oraz IntuScope. Spostrzeżenia oraz wnioski zanotować.

W oknie deklaracji analizy czasowej zadeklarować parametr Maximum Time Step o wartości 5us. Spostrzeżenia oraz wnioski zanotować.

Wnioski i spostrzeżenia:

.....

Zadanie 4. Modyfikacja warunku stopu dla algorytmu N-R

Wczytać z katalogu ASP projekt: Para_roznicowa_NR.dwg. Przeprowadzić symulację (analiza czasowa) i wyprowadzić graficznie jej wyniki (IsSpice lub IntuScope). Czy poznanymi już metodami można zwiększyć dokładność wyników?

Niewłaściwie dobrane są parametru warunku stopu algorytmu N-R: ABSTOL, RELTOL oraz GMIN. Co oznaczają te parametry? Jaką pełnią rolę w algorytmie analizy czasowej?

.....

Otworzyć okno zaawansowanych ustawień analizy czasowej (Simulator Options). Stopniowo (o rząd wielkości) zmniejszaj te parametry (każdy z osobna) obserwując zmiany w oknie symulatora IsSpice (nie trzeba w InstuScopie). Znajdź przy jakich największych wartościach wynik symulacji jest już poprawny.

Zadanie 5. Porównanie algorytmu trapezowów vs. Geara – v.1

Nowy projekt: narysować układ z diodą półprzewodnikową, zadeklarować właściwe źródło wymuszenia oraz analizę Tran (wytyczne poniżej) – projekt zapisać w katalogu ASP pod nazwą: *Dioda_imp.dwg*.

Przeprowadzić analizę czasową (Tran) dla zadeklarowanych parametrów. Wynik symulacji (z IsSpice lub IntuScope) przeszkicować:

metoda trapezów

metoda Geara

W oknie deklaracji parametrów analiz symulacyjnych [Simulator Options] zaznaczyć wybór metody Geara. Ponownie przeprowadzić analizę czasową (dla tych samych parametrów co uprzednio). Wynik symulacji przeszkicować do okna powyżej.

Spostrzeżenia i wnioski:

Zadanie 6. Porównanie algorytmu trapezowów vs. Geara – v.1

Nowy projekt: narysować szeregowy obwód rezonansowy RLC. Zadeklarować właściwe źródło wymuszenia oraz analizę Tran (wytyczne poniżej) – projekt zapisać w katalogu ASP pod nazwą: *RLC_gear.dwg*.

Przeprowadzić analizę czasową (Tran) dla zadeklarowanych parametrów. W nowym projekcie Icapa domyślną metodą dla analizy czasowej jest algorytm trapezów. Wynik symulacji (z IntuScope) przeszkicować:

metoda trapezów

metoda Geara

W oknie deklaracji parametrów analiz symulacyjnych [Simulator Options] zaznaczyć wybór metody Geara. Ponownie przeprowadzić analizę czasową (dla tych samych parametrów co uprzednio). Wynik symulacji przeszkicować do właściwego okna powyżej.

Spostrzeżenia i wnioski: